Review Exam II, MTH 221 , Spring 2011

Ayman Badawi

QUESTION 1. Let $F=\operatorname{span}\left\{1-x+x^{2},-1+x^{2}, 2 x\right\}$
(i) Find a basis for F.
(ii) Is $6-3 x+5 x^{2} \in F$? EXPLAIN.

QUESTION 2. Given $v_{1}=(1,1,1,1), v_{2}=(-1,0,1,1), v_{3}=(-1,-1,-1,0)$ are independent in R^{4}. Find $v_{4} \in R^{4}$ such that $B=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for R^{4}. Show the work.

QUESTION 3. Are $2+x,-2,30+7 x$ independent in P_{2} ? explain
QUESTION 4. Given $T: R^{3} \longrightarrow R_{2 \times 2}$ such that $T\left(\left(a_{1}, a_{2}, a_{3}\right)\right)=\left[\begin{array}{cc}a_{1} & \left.a_{1}\right) \\ a_{3} & a_{2}\end{array}\right]$ is a linear transformation.
(i) Find the standard matrix representation of T.
(ii) Find a basis for $\operatorname{Ker}(\mathrm{T})$ and write $\operatorname{Ker}(\mathrm{T})$ as a span.
(iii) Find a basis for Range(T) and write Range(T) as a span.

QUESTION 5. Given $T: P_{3} \longrightarrow R$ is a linear transformation such that $T(1)=2, T\left(x^{2}+x\right)=-5$, and $T\left(x^{2}+\right.$ $2 x+2)=-8$.
(i) Find $T(x)$ and $T\left(x^{2}\right)$ and $T\left(5 x^{2}+3 x+8\right)$
(ii) Find the standard matrix representation for T.
(iii) Find a basis for $\operatorname{Ker}(\mathrm{T})$ and write $\operatorname{Ker}(\mathrm{T})$ as a span.
(iv) Is T ONTO? explain.

QUESTION 6. Let $F=\left\{a+b x+b x^{2}+c x^{3} \in P_{4} \mid a, b, c, d \in R, a-2 b-d=0\right.$, and $\left.c-3 b-d=0\right\}$.
(i) Show that F is a subspace of P_{4}.
(ii) Find a basis for F and write F as a span.

QUESTION 7. (8 points) Let $D=\left\{3 a+b^{2} x^{2}+4 a x^{3} \mid a, b \in R\right\}$ Is D a subspace of P_{4} ? If NO, explain. If YES, find a basis for D

QUESTION 8. (15 points) Let $A=\left[\begin{array}{cccccc}1 & 1 & 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 2 & 3 & 4 \\ 2 & 2 & 2 & 2 & 5 & 2\end{array}\right]$
(i) Find a basis for $R O W(A)$.
(ii) Find a basis for $\operatorname{Col}(A)$

QUESTION 9. (10 points) Given $L=\left\{\left.\left[\begin{array}{cc}2 a & 2 a-b \\ b+a & -c\end{array}\right] \right\rvert\, a, b, c \in R\right\}$ is a subspace of $R_{2 \times 2}$. Find a basis for L.

QUESTION 10. Let $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right]$ Given $\operatorname{det}(A)=21.23$ Consider the following system $A X=\left[\begin{array}{l}3.2 a_{2}+a_{1} \\ 3.2 a_{5}+a_{4} \\ 3.2 a_{8}+a_{7}\end{array}\right]$. Solve for x_{1}, x_{2}, and x_{3}.

QUESTION 11. $A=\left[\begin{array}{cccc}1 & 2 & 2 & -4 \\ 0 & 0 & 3 & -2 \\ -1 & 4 & 2 & 2 \\ -1 & -2 & -2 & 8\end{array}\right]$ Find the $(2,4)$-entry of $A-1$
QUESTION 12. (i) In each question below a vector space V is given, together with a subset $W \subseteq V$. In each case state (with justification) whether or not W is a subspace of V. If W is a subspace of V, find a basis for W and the dimension of W.
a. $V=R^{2}, W=\left\{(x, y) \in R^{2} \mid x \geq 0\right.$ and $\left.y \geq 0\right\}$.
b. $V=R_{2 \times 2}, W=\left\{A \in R_{2 \times 2} \mid \operatorname{Rank}(A) \leq 1\right\}$

QUESTION 13. (i) Find a basis for the subspace W where

$$
W=\left\{\left.\left[\begin{array}{ccc}
a-b+3 c & 4 a+3 b-9 c & 2 a \\
8 a+2 b-6 c & 5 a & 0
\end{array}\right] \right\rvert\, a, b, c \in R\right\}
$$

QUESTION 14. (i) $\operatorname{Let} A=\left[\begin{array}{ccccc}2 & -4 & 0 & -6 & 2 \\ 0 & 0 & 1 & 0 & 0 \\ -1 & 2 & 0 & 3 & 6\end{array}\right]$. If $T: R^{5} \rightarrow R^{3}$ is defined by $T\left(\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)\right)=$ $A\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ a_{5}\end{array}\right]$
a. Find a basis for the range of T
b. Find $\operatorname{Ker}(T)$ and Write $\operatorname{Ker}(T)$ as a span

QUESTION 15. (i) The linear transformation $T: P_{3} \rightarrow R$ is given by

$$
T(p(x))=\int_{-1}^{1} p(x) d x
$$

a. Find a $p(x)$ in P_{3} so that $T(p(x))=2011$.
b. Find $\operatorname{Ker}(T)$ and write $\operatorname{Ker}(\mathrm{T})$ as a span.
c. Is T one to one? explain

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

